
The MAUS Work Book
Adam Dobbs

Version 1.7, August 2015

MICE

Contents
1 Glossary of Terms 4

2 MAUS Description 5

3 Installing MAUS 5
3.1 Obtaining the Code . 5
3.2 Installation . 6
3.3 Preparing to run . 6
3.4 Rebuilding . 6
3.5 Choosing the Unpacker . 6

4 An Introduction to the MAUS UI and API 7
4.1 The API . 7
4.2 Creating a MAUS programme . 7
4.3 A Minimal Working Example . 8
4.4 Running a MAUS Programme and Using Datacards 8

5 The Datastructure 9

6 Geometry 10

7 Running a MC Simulation 10

8 Reconstructing Real MICE Data 11
8.1 Do I Need to be Reconstructing Data Myself? . 11
8.2 Obtaining the Raw Data . 11
8.3 Unpacking and Reconstructing . 12

9 Analysing Output Data 12
9.1 Obtaining Data for Analysis . 12
9.2 Understanding the ROOT file . 13
9.3 Analysis with the ROOT interpreter . 14

9.3.1 Loading Data . 14
9.3.2 ROOT Scripts . 14
9.3.3 Plotting directly from a TTree . 14
9.3.4 Reloading the Datastructure . 15

9.4 Analysis with Python . 16
9.4.1 Loading Data . 16
9.4.2 Plotting directly from a TTree . 16
9.4.3 Reloading the Datastructure . 17
9.4.4 ROOT alternatives . 18

9.5 Analysis with C++ . 18

A Module Descriptions 20
A.1 Input . 20
A.2 Output . 20
A.3 Map . 21
A.4 Reduce . 22

2

B Common Parameters and their Defaults 22

C Navigating the Source Code 23

D Useful Information 23

3

1 Glossary of Terms

• ADC - Analogue-to-Digital Converter

• API - Application Programme Interface

• BASH - Bourne Again Shell, a linux command line programme

• Bazaar - A distributed version control system

• CKOV - Threshold cherenkov detectors

• Datacard - A list of variables passed into MAUS (actually a Python script)

• DAQ - Data Aquisition system

• EMR - Electron Muon Ranger, a calorimeter

• KL - KLOE-Lite detector

• GEANT4 - Framework to simulate passage of particles through matter

• GRID - A network of computing resources used for large scale data processing

• JSON - Jave Script Object Notation, an ASCII format

• MAUS - MICE Analysis User Software

• MICE - Muon Ionization Cooling Experiment

• MC - Monte Carlo simulation

• PID - Particle Identification

• ROOT - The standard high energy physics analysis framework, see https://root.cern.ch

• Spill - Data class in MAUS, corresponds to the data produced in MICE for one dip of the pion
production target

• TDC - Time-to-Digital Converter

• TOF - Time of Flight, or the associated detectors

• Tracker - Scintillating fibre trackers

• UI - User Interface

• Unpacker - A third party library bundled with MAUS, used internally to extract data from the
MAUS DAQ binary format

4

https://root.cern.ch

2 MAUS Description

MAUS stands for MICE Analysis User Software. MICE itself refers to the Muon Ionization Cooling
experiment, see the website for more details:

http://www.mice.iit.edu.

MAUS is the official software framework for the simulation and reconstruction of the MICE data. It
also provides an environment which can be used for developing subsequent analysis tools, and provides
the libraries neccessary for using other tools to access processed MICE data.

This workbook constitutes a quick start guide for MAUS. It covers the following standard tasks:

• Performing simulations;

• Unpacking and reconstructing raw MICE data;

• Accessing and analysing simulated and reconstructed data.

A much fuller description of MAUS can be found in the User Guide, available at:

http://micewww.pp.rl.ac.uk/maus/MAUS_latest_version/maus_user_guide/index.html.

3 Installing MAUS

This section provides a summary of how to install MAUS on a Linux operating system. MAUS
officially supports Scientific Linux 6 and recent versions of CentOS only, however unofficially MAUS
should compile on many modern linux distributions, including Ubuntu. A more detailed guide to
installing MAUS, including a list of prerequisites, can be found on the MAUS wiki:

http://micewww.pp.rl.ac.uk/projects/maus/wiki/Install

3.1 Obtaining the Code

MAUS may be obtained in one of two ways. First, MAUS releases are available for download as
gzipped tarballs from:

http://micewww.pp.rl.ac.uk/maus/

Alternatively MAUS may be branched using the Bazaar distributed version control system (see
http://bazaar.canonical.com) from the Launchpad code hosting website. The MAUS page
on Launchpad is https://launchpad.net/maus. A detailed guide to using Bazaar with MAUS can
be found on the MAUS wiki at http://micewww.pp.rl.ac.uk/projects/maus/wiki/Bzr_usage
(see section D). In order to branch the latest release use:

bzr branch lp:maus

In order to obtain the latest development code (not for use if doing analyses) use:

bzr branch lp:maus/merge

5

http://www.mice.iit.edu
http://micewww.pp.rl.ac.uk/maus/MAUS_latest_version/maus_user_guide/index.html
http://micewww.pp.rl.ac.uk/projects/maus/wiki/Install
http://micewww.pp.rl.ac.uk/maus/
http://bazaar.canonical.com
https://launchpad.net/maus
http://micewww.pp.rl.ac.uk/projects/maus/wiki/Bzr_usage

3.2 Installation

Once the MAUS source code has been obtained, move into the source root directory. Inside this
directory is a BASH script named install_build_test.sh. Execute this script to perform the full
MAUS installation. On multicore machines use the flag “-j N” where N is the number of processor
threads to use. For example, to install with two threads:

./ install_build_test.sh -j 2

If another fully built MAUS installation of the same release is already present on the system, then the
third party libraries from that installation can be linked against instead of building them from scratch
(saving a lot of disk space and time during installation). This is done by specifying the location of
the other MAUS installation with a “-t” flag, for example:

./ install_build_test.sh -t /path/to/other/maus

3.3 Preparing to run

Prior to running, the MAUS envionment variables must be loaded into the local shell environment
each time a new shell is used. This is done by sourcing the script “env.sh” found in the MAUS root
directory:

source env.sh

MAUS is now ready to use!

3.4 Rebuilding

If any code within MAUS is modified, it will need to be rebuilt for the changes to take effect. MAUS
uses the scons build system (a Make replacement based on Python). To rebuild MAUS, simply type
scons from the MAUS root directory (after sourcing the environment). A flag -jN may also be
supplied to run on multiple threads. In order to clean the build before rebuilding, the command
scons -c may be used.

3.5 Choosing the Unpacker

The unpacker is a third party library which ships with MAUS, and is used internally for extracting
the raw binary data produced by the MICE DAQ. There are two versions of the unpacker present in
MAUS, one corresponding to MICE Step I data, the other to MICE Step IV and later data. From
MAUS release 0.9.5 the default unpacker is set to be Step IV.

To switch between unpackers, a simple utility script, switch_unpacker.bash, is provided in the
MAUS root directory. To switch unpackers, source the MAUS environment and then source (not
run) this script, supplying an argument of either of StepI or StepIV. This will edit env.sh, change
the MICE_ UNPACKER_VERSION environment variable, rebuild the unpacker, and clean and rebuild
MAUS.

NB: The switch_unpacker.bash script only works for full MAUS installations; if the MAUS instal-
lation links against third parties from another installation, the script will abort. In this case, change

6

the unpacker version in the full MAUS installation first using the script, then in the linked MAUS
installation edit env.sh so that MICE_ UNPACKER_VERSION is set to the correct value, and clean and
rebuild MAUS manually.

4 An Introduction to the MAUS UI and API

4.1 The API

MAUS is written in both C++ and Python, with Python primarily in the code presented to the user,
and C++ primarily in the backend to do the hard work. MAUS is split up into different modules
which can be chained together to perform various tasks. Data is passed between each module via
an instance of a class known simply as Data. Within the Data object the rest of the MAUS data
structure is nested (see section 5).

There are four types of module present in MAUS:

• Input - modules which read in data, such as from the DAQ or a ROOT file

• Map - modules which perform most of the work of simulation and reconstruction

• Reduce - modules which accumulate data in order to produce plots

• Output - writes out processed data to e.g. a ROOT or JSON file

Modules are chained together using a Python script to create a functional MAUS programme. This
is illustrated in figure 1.

Input Map Reduce Output
Data Data Data

Figure 1: The MAUS Map - Reduce scheme.

4.2 Creating a MAUS programme

All the core MAUS modules and classes may be imported into Python ready for use by using the
command:

import MAUS

Each desired input, map, reduce and output module must then be declared. For example, to declare
an input module used to setup the spill structure ready for a simulation:

my_input = MAUS.InputPySpillGenerator ()

There must only be one input and output module used. However, multiple maps and reducers may
be used by grouping them together using the special modules MapPyGroup and ReducePyGroup. For
example, to group together the maps needed for a GEANT4 beam simulation:

my_map.append(MAUS.MapPyBeamMaker ()) # Beam construction
my_map.append(MAUS.MapCppSimulation ()) # GEANT4 simulation

7

Also, if no maps or reducers are required, the “do nothing” modules, MAUS.MapPyDoNothing() and
MAUS.ReducePyDoNothing() must be used.

After declaring all the required MAUS modules, a special class known as datacards for handling the
passing of parameters must be declared. Datacards are collections of parameters used by MAUS, and
are discussed in section 4.4. To use only parameters passed from the command line or via a datacard,
with the rest set to their default values, the following declaration is used:

datacards = io.StringIO(u"")

Finally, all the modules and datacards are passed to a special class called “Go”, which runs each
module in turn and passes the data from one to another:

MAUS.Go(my_input , my_map , my_reduce , my_output , datacards)

4.3 A Minimal Working Example

A minimal working example which performs a GEANT4 beam simulation, reconstructs the Time-of-
Flight (TOF) detector data and writes the output to a ROOT file is shown below:

import io # Generic Python library for I/O
import MAUS # MAUS libraries

def run():
my_input = MAUS.InputPySpillGenerator ()
my_map = MAUS.MapPyGroup ()
my_map.append(MAUS.MapPyBeamMaker ()) # Beam construction
my_map.append(MAUS.MapCppSimulation ()) # GEANT4 simulation
my_map.append(MAUS.MapPyMCReconSetup ()) # Detector setup
my_map.append(MAUS.MapCppTOFMCDigitizer ()) # TOF MC Digitizer
my_map.append(MAUS.MapCppTOFSlabHits ()) # TOF Slab Hits
my_map.append(MAUS.MapCppTOFSpacePoints ()) # TOF Spacepoints
my_reduce = MAUS.ReducePyDoNothing ()
my_output = MAUS.OutputCppRoot ()
datacards = io.StringIO(u"")
MAUS.Go(my_input , my_map , MAUS.ReducePyDoNothing () \

my_output , datacards)

if __name__ == ’__main__ ’:
run()

4.4 Running a MAUS Programme and Using Datacards

Once the Python script has been created it can be executed using the Python interpreter (remembering
to source env.sh first). For example to run a script called “my_programme.py” use:

python my_programme.py

8

It is also important to consider what parameter values the programme requires. MAUS uses a large
set of parameters to configure how it runs, covering areas such simulation beam parameters, input
and output file names, which geometry files to use, etc. The default values for all these parameters
are set in the file src/common_py/ConfigurationDefaults.py. Parameters may be modified from
their default values in one of three ways.

1. By passing arguments to the executable Python script. The required syntax is --variable-name
value. For example to change the name of the output ROOT file from its default value of
“maus_output.root” to “my_output.root” when running a programme defined by the Python
script my_programme.py, the following command could be used:

python my_programme.py --output_root_file_name my_output.root

2. With a datacards file. A datacards file is simply a list of parameters and values, one per line,
of the form:

variable=value

A datacard may be passed to an executable by using the --configuration_file flag. For
example, to run a script called “my_programme.py” together with a datacard called “datac-
ard.py”:

python my_programme.py --configuration_file datacard.py

3. From within the executable Python script. By modifying the line

datacards = io.StringIO(u"")

parameters may be set by assigning them a value between the speech marks.

Generally, if only one or two parameters require setting, method 1 is easiest, otherwise use method 2.

NB: Only use one method at a time, or some of the settings may be ignored! Some parameters and
their default values are listed in appendix B.

5 The Datastructure

MAUS uses a large and complex data structure to store all the MC simulation, raw detector and
reconstruction data. A diagram illustrating the data structure can be found at:

http://micewww.pp.rl.ac.uk/maus/MAUS_latest_version/maus_user_guide/node10.html

Perhaps more helpfully, the data structure is extensively documented using the Doxygen documenta-
tion system, available at:

http://micewww.pp.rl.ac.uk/maus/MAUS_latest_version/doc/index.html

The top level object in the data structure is a class called simply Data. This contains run and job
header and footer information (such as the version of MAUS used, the date of the run, etc) together
with a single Spill object. A Spill represents all the experimental data associated with one dip of
the MICE pion production target; all MC, raw detector and reconstruction data is contained within
it.

The Spill is split into three main branches:

9

http://micewww.pp.rl.ac.uk/maus/MAUS_latest_version/maus_user_guide/node10.html
http://micewww.pp.rl.ac.uk/maus/MAUS_latest_version/doc/index.html

• MCEvent holds the MC truth data for every track together with all MC detector and virtual
hits produced;

• DAQData holds the raw, unpacked data for each detector (such as ADC and TDC values)

• and ReconEvent holds the reconstructed data for each detector.

Examples showing how to access and navigate the data structure for analysis are given in sec-
tion 9.

6 Geometry

MAUS uses a sophisticated GDML-based geometry for use in both simulation and reconstruction
(by default the same geometry is used for both). The canonical geometry is stored in the MICE
configuration database (CDB), while an older legacy geometry is stored locally in MAUS (currently
still the default option).

The CDB is a bitemporal database, that is it stores geometry configurations based on upload date and
date of validity. A particular CDB geometry must be downloaded to the local MAUS installation before
it may be used by a programme. This can be done using a utility script, download_geometry.py,
located in bin/utilities. The script queries the CDB and then downloads the required geometry.
Geometries can be selected for download by a number of methods:

1. Retrieve current geometry:

./bin/utilities/download_geometry.py
--geometry_download_by current

2. By geometry ID e.g.

./bin/utilities/download_geometry.py --geometry_download_id 50

3. By run number e.g.

./bin/utilities/download_geometry.py
--geometry_download_by run_number
--geometry_download_run_number 6008

By default, CDB geometries are stored in files/geometry/download. A simulation or reconstruc-
tion script can be told to use a particular geometry by using the flag --simulation_geometry_file
followed by the absolute path and the top level geometry file name, ParentGeometryFile.dat. For
simulation usage examples see section 7, and for reconstruction usage examples see section 8.

7 Running a MC Simulation

An example script for running a full MC simulation of MICE can be found in the bin directory:

./bin/simulate_mice.py

10

This will produce a ROOT output file which can be used for analysis.

It is generally desirable to customise the simulation in some way by passing datacard variables. For
example to specify a particular geometry to use from the CDB, first download the desired geometry
as described in section 6. A new reference simulation particle must also then be defined (due to
differences between the local legacy geometry and the CDB geometries) via a datacard parameter.
This can be defined in a datacard file as:

simulation_reference_particle = {"position":{"x":0.0, "y":0.0, "z"
:1000.0} , "momentum":{"x":0.0, "y":0.0, "z":1.0} , "particle_id"
:-13, "energy":226.0 , "time":0.0, "random_seed":10, "spin":{"x"
:0.0, "y":0.0, "z":1.0}}

This gives a reference particle starting at coordinates (0, 0, 1000) (in mm), pz = 1 MeV/c, species
µ+ with energy 226 MeV. If the above line is stored in a file “datacard.py”, the new simulation can
be run with:

./bin/simulate_mice.py --simulation_geometry_file /path/to/maus/
files/geometry/download/ParentGeometryFile.dat --
configuration_file datacard.py

For details on the rest of the options available when performing simulations, see the full MAUS user
guide.

8 Reconstructing Real MICE Data

8.1 Do I Need to be Reconstructing Data Myself?

Before reconstructing raw MICE data, it is important to stop and consider whether this is the best
workflow for the task in hand. All MICE data should already be available unpacked and reprocessed
from one of the standard locations listed in 9. This reprocessing will have been done using an official
release version of MAUS with a standard set of parameters - hence anyone thinking of analysing
data for publication should use the official processed data instead of processing themselves.
If this does not dissuade you, then read on.

8.2 Obtaining the Raw Data

MICE data is recorded by MICE DAQ as custom format binary files. This data is available for
download from a web interface hosted at:

http://www.hep.ph.ic.ac.uk/micedata/

For those with GRID credentials who are members of the MICE virtual organisation, the data may
also be obtained from the GRID at LFC location /grid/mice/MICE/.

The data is distributed as tar archives. Once extracted the binary data files can be identified by their
filenames, which follow the format <run_number>.nnn where nnn is a number corresponding to the
data block of the run respresented by the file, beginning at 000.

11

http://www.hep.ph.ic.ac.uk/micedata/

8.3 Unpacking and Reconstructing

An example script which unpacks the binary data and reconstructs data from all the MICE dectors
can be found in the bin directory. Parameters indicating the location and name of the binary data file
must be passed in, together with the appropriate geometry for the run being analysed (the desired
geometry must be downloaded first, as described in section 6). For example:

python ./bin/analyze_data_online.py \
--daq_data_path /path/to/data/ \
--daq_data_file file.name \
--simulation_geometry_file /path/to/maus/files/geometry/

download/ParentGeometryFile.dat

(Note we specify the simulation geometry file, as the reconstruction geometry will default to the same
value.) This will produce a ROOT file containing all the unpacked raw data and the reconstrucuted
data, ready for analysis.

9 Analysing Output Data

9.1 Obtaining Data for Analysis

Figure 2: The MICE data webstore, reconstruction section.

Data from simulation may be produced by MAUS as described in section 7. For real data, as men-
tioned in section 8, the preferred route is for analysts to use MICE data which has been unpacked
and reconstructed centrally on the GRID. This ensures everyone is using the same standard recon-
struction parameters from an official release of MAUS, and is especially important if the analysed
data is intended for publication. If it is still desirable to reconstruct data locally with MAUS prior to
analysis, see section 8. Otherwise, centrally processed MICE data is made available from the MICE
webstore:

http://www.hep.ph.ic.ac.uk/micedata/RECO/

The front page of the reconstruction section of the webstore is shown in figure 2. The data in
the webstore is organised by MAUS version used to perform the reconstruction, by parameter set
used in the reconstruction (assigned a unique number known as the batch iteration number or BIN)

12

http://www.hep.ph.ic.ac.uk/micedata/RECO/

TTree

MAUS�ROOT�File

MAUS�Spill

DAQ�data

MC�data

Reconstruction�Data

Figure 3: The top few levels of a MAUS ROOT file, as shown by a ROOT TBrowser.

and by run number. The data for each run is then stored in a tarball file archive which may be
downloaded. Inside the tar archive there are a number of log files and parameter files. The data itself
is stored in a ROOT file following the naming convention xxxxx_recon.root, where xxxxx is the
run number.

A catalogue of MICE runs, including run numbers, run conditions, beamline optics, number of triggers
taken, etc. is available via the MICE CDB viewer:

http://cdb.mice.rl.ac.uk/cdbviewer/

9.2 Understanding the ROOT file

By default, simulated and reconstructed data produced by MAUS is stored in a ROOT file, and data
processed on the GRID is also stored in this format. The top level object in a MAUS ROOT file is
a ROOT TTree called “Spill”. This TTree contains a branch holding a MAUS data structure Data
object, which in turn contains a MAUS data structure Spill object (not to be confused with the TTree
called Spill). All the raw detector, MC and reconstruction data is found within this Spill object. The
top few levels of a MAUS ROOT file, displayed in a TBrowser, are shown in figure 3.

There are three standard ways of accessing the data stored in the ROOT file: via ROOT directly
(either manually through the ROOT interpretter or with an interpretted ROOT script); via Python
using PyROOT (again either through the Python interpretter directly or with a Python script); or with
a C++ programme using the ROOT libraries. All three methods require the MAUS data structure
library to be loaded to interpret the data (described in the sections below).

Both the ROOT and Python methods allow the data inside the TTree to be accessed either directly
from the TTree (using “tree->Draw(...)”), or loaded back into data structure classes in memory.

13

http://cdb.mice.rl.ac.uk/cdbviewer/

C++ can only use the latter. Direct plotting from a the TTree allows for quick and easy browsing of
data, whereas loading data back into data structure classes allows greater versatility in analysis.

It is important to note that ROOT allows direct plotting from a TTree only down to a few levels of
nested data - hence data nested too deeply into the MAUS data structure cannot be plotted directly
from the Spill TTree, either by the ROOT or Python interpretter. In order to plot such data, the data
from each spill must be loaded back from the TTree into data structure objects in memory.

Interactive plotting directly from TTrees is discussed for ROOT in section 9.3.3 and for Python in
section 9.4.2. Loading data back into data structure classes is discussed for ROOT in section 9.3.4,
for Python in section 9.4.3 and for C++ in section 9.5.

9.3 Analysis with the ROOT interpreter

9.3.1 Loading Data

Source the MAUS environment and load an interactive ROOT session. From the ROOT command
line load the MAUS data structure library:

.L $MAUS_ROOT_DIR/build/libMausCpp.so

Load the ROOT output file produced by MAUS:

TFile f1("maus_output.root")

9.3.2 ROOT Scripts

Commands may be automated with a ROOT script, which is simply a collection of ROOT commands
contained between an opening { and closing } in a text file. An important difference to note
however is that loading the MAUS data structure library follows a slightly different format when
in a script compared to using the ROOT interpreter directly. The library must now be loaded by
calling gSystem->Load:

maus_root_dir = TString(gSystem ->Getenv("MAUS_ROOT_DIR"));
gSystem ->Load(maus_root_dir + "/build/libMausCpp.so");

9.3.3 Plotting directly from a TTree

Once the data structure and MAUS root file have been loaded, data can be explored using a GUI via
the ROOT TBrowser:

TBrowser b

A example of using the TBrowser to navigate the data structure and plot a histogram is shown in
figure 4.

The ROOT command line may also be used to plot data interactively. For example, the histogram
shown in figure 4 could be drawn directly using the command:

Spill.Draw("data._spill._recon ->_scifi_event ->_scifispacepoints.
_npe")

14

Figure 4: A ROOT TBrowser plotting the number of photoelectrons in every SciFi SpacePoint for a
short MC run.

9.3.4 Reloading the Datastructure

To load data back into MAUS data structure classes from the TTree a MAUS Data object pointer
must be assigned to the memory address of the MAUS Data object held by the TTree. All the
entries in the TTree can then be looped over which will update the pointer to the next spill’s Data
object each time. A short ROOT script example which reproduces the histogram in figure 4 is shown
below, and is also available to download from http://micewww.pp.rl.ac.uk/documents/140 as
“root_analysis_example.C”.

{
// Load the MAUS data structure
maus_root_dir = TString(gSystem ->Getenv("MAUS_ROOT_DIR"));
gSystem ->Load(maus_root_dir + "/build/libMausCpp.so");

// Set up the ROOT file and data pointer
TFile f1("maus_output.root"); // Load the MAUS output file
TTree *T = f1.Get("Spill"); // Pull out the TTree
MAUS::Data *data_ptr; // Variable to store Data from each spill
// Set address of data_ptr to Data object in TTree
T->SetBranchAddress("data", &data_ptr);

// Create the histogram
TH1D* h1 = new TH1D("npe", "SciFi Spacepoint NPE", 100, 0, 150);
h1 ->GetXaxis ()->SetTitle("Number of photoelectrons");
h1 ->SetLineColor(kBlue);

15

http://micewww.pp.rl.ac.uk/documents/140

// Loop over all spills
for (size_t i = 0; i < T->GetEntries (); ++i) {

T->GetEntry(i); // Update the spill pointed to by data_ptr
MAUS::Spill* spill = data_ptr ->GetSpill (); // Get the spill
if (spill == NULL ||

!(spill ->GetDaqEventType () == "physics_event")) continue;
std::cout << "Spill: " << spill ->GetSpillNumber () << "\n";
std::vector <MAUS:: ReconEvent *>* revts = spill ->GetReconEvents

();
// Loop over recon events in spill
for (size_t j = 0; j < revts ->size(); ++j) {

if (!revts ->at(j)) continue; // Check event pointer
MAUS:: SciFiEvent* sfevt = revts ->at(j)->GetSciFiEvent ();
std::vector <SciFiSpacePoint*> spnts = sfevt ->spacepoints ();
// Loop over spacepoints
for (size_t k = 0; k < spnts.size(); ++k) {

h1 ->Fill(spnts[k]->get_npe ()); // Fill histo with npe
}

}
}
// Draw the histogram
TCanvas * c1 = new TCanvas("c1", "SF Spacepoint NPE", 900, 600);
h1 ->Draw();

}

9.4 Analysis with Python

9.4.1 Loading Data

Source the MAUS environment and load an interactive Python session. From the Python interpreter
load ROOT and the MAUS data structure library:

>>> import libMausCpp
>>> from ROOT import *

MAUS data structure classes are now accessible. For example, to create a Spill object:

>>> spill = MAUS.Spill ()

NB: Remember to add the trailing “()” or the class contructor will not be called.

A MAUS output file may now be loaded:

>>> f1 = TFile("maus_output.root")

9.4.2 Plotting directly from a TTree

Once ROOT and the MAUS data structure are loaded, all the tools available in ROOT are available
from Python. For example, to load a TBrowser use:

16

>>> b = TBrowser ()

To reproduce the histogram in simply use

>>> Spill.Draw("data._spill._recon ->_scifi_event ->
_scifispacepoints._npe")

9.4.3 Reloading the Datastructure

The same principles used in the ROOT case apply to reloading data in to the MAUS data structure
classes from the TTree. An example script which reproduces the histogram in figure 4 is shown
below, and is also available to download from http://micewww.pp.rl.ac.uk/documents/140 as
“python_analysis_example.py”.

#!/usr/bin/env python

import libMausCpp
from ROOT import *

Set up the ROOT file and data pointer
f1 = TFile("maus_output.root")
t1 = f1.Get("Spill")
data_ptr = MAUS.Data()
t1.SetBranchAddress("data", data_ptr)

Create the histogram
h1 = TH1D("h1", "Spacepoint NPE", 100, 0, 150);
h1.GetXaxis ().SetTitle("Number of photoelectrons")
h1.SetLineColor(kBlue)

Loop over all spills
for i in range(1, t1.GetEntries ()):

t1.GetEntry(i) # Update the spill pointed to by data_ptr
spill = data_ptr.GetSpill ()
if spill.GetDaqEventType () == "physics_event":

Loop over recon events in spill
for j in range(spill.GetReconEvents ().size()):

sfevt = spill.GetReconEvents ()[j]. GetSciFiEvent ()
Loop over spacepoints
for k in range(sfevt.spacepoints ().size()):

spoint = sfevt.spacepoints ()[k]
h1.Fill(spoint.get_npe ())

Draw the histogram
c1 = TCanvas("c1", "SF Spacepoint NPE", 900, 600)
h1.Draw()
raw_input("Press Enter to finish ...")

17

http://micewww.pp.rl.ac.uk/documents/140

9.4.4 ROOT alternatives

Once the MAUS data structure has been repopulate from the TTree as described above, alternative
tools may be used to produce the desired histograms, plots, etc. MAUS comes bundled with the
popular Python numpy and matplotlib packages, which are ready to use in the Python interpret-
ter.

9.5 Analysis with C++

The fastest method for large scale data analysis is to compile a C++ programme which calls on the
ROOT and MAUS data structure headers and libraries. The programme structure is very close to
that of the ROOT script described in section 9.3.4. An important difference to note is that instead of
loading the MAUS output ROOT file directly, a custom C++ streamer class, irstream may be used,
which serialises the TFile data ready for use.

An example source file which recreates the histogram in figure 3 is produced below, and is also available
to download from http://micewww.pp.rl.ac.uk/documents/140 as “cpp_analysis_example.cc”.
It produces an executable which takes the MAUS output ROOT file an argument and will display
the histogram to screen. NB: In order to display the histogram while the application is running, the
ROOT class “TApplication” must be used. If the purpose of the application was just to save the
output to, say, a graphics file, this would not be needed.

#include <iostream >
#include <string >
#include <vector >

#include "TCanvas.h"
#include "TH1D.h"
#include "TApplication.h"

#include "src/common_cpp/JsonCppStreamer/IRStream.hh"
#include "src/common_cpp/DataStructure/Spill.hh"
#include "src/common_cpp/DataStructure/Data.hh"
#include "src/common_cpp/DataStructure/ReconEvent.hh"
#include "src/common_cpp/DataStructure/SciFiEvent.hh"
#include "src/common_cpp/DataStructure/SciFiSpacePoint.hh"

/** Access Tracker data using ROOT */

int main(int argc , char *argv []) {
// First argument to code should be the input ROOT file name
std:: string filename = std:: string(argv [1]);

// Set up ROOT app , input file , and MAUS data class
TApplication theApp("App", &argc , argv);
std::cout << "Opening file " << filename << std::endl;
irstream infile(filename.c_str(), "Spill");
MAUS::Data data;

18

http://micewww.pp.rl.ac.uk/documents/140

// Create the histogram
TH1D* h1 = new TH1D("npe", "SciFi Spacepoint NPE", 100, 0, 150);
h1 ->GetXaxis ()->SetTitle("Number of photoelectrons");
h1 ->SetLineColor(kBlue);

// Loop over all spills
while (infile >> readEvent != NULL) {

infile >> branchName("data") >> data;
MAUS::Spill* spill = data.GetSpill ();
if (spill == NULL || spill ->GetDaqEventType () != "

physics_event")
continue;

std::cout << "Spill: " << spill ->GetSpillNumber () << "\n";
std::vector <MAUS:: ReconEvent *>* revts = spill ->GetReconEvents

();

// Loop over recon events in spill
for (size_t i = 0; i < revts ->size(); ++i) {

if (!revts ->at(i)) continue;
MAUS:: SciFiEvent* sfevt = revts ->at(i)->GetSciFiEvent ();

// Loop over spacepoints
std::vector <MAUS:: SciFiSpacePoint*> spnts = sfevt ->

spacepoints ();
std::vector <MAUS:: SciFiSpacePoint *>:: iterator spnt;
for (spnt = spnts.begin (); spnt != spnts.end(); ++spnt) {

h1 ->Fill ((* spnt)->get_npe ());
}

} // ~Loop over Recon events
} // ~Loop over all spills

// Draw the histogram
TCanvas * c1 = new TCanvas("c1", "SF Spacepoint NPE", 900, 600);
c1 ->cd();
h1 ->Draw();
theApp.Run();

}

Due to the considerable number of dependencies, it is easier to use a build system to compile this,
rather than running the compiler directly. Below is an example Makefile which can be used to compile
and link the above the example (assuming a source file of “cpp_analysis_example.cc”.). It is also
available to download from http://micewww.pp.rl.ac.uk/documents/140 as “Makefile”.

19

http://micewww.pp.rl.ac.uk/documents/140

CC = g++
CFLAGS = -DDEBUG -ggdb -Wall

all : cpp_analysis_example

cpp_analysis_example : cpp_analysis_example.cc
$(CC) $(CFLAGS) cpp_analysis_example.cc -o cpp_analysis_example

\
-I${MAUS_ROOT_DIR }/ \
-I${MAUS_ROOT_DIR }/src/common_cpp \
-I${MAUS_ROOT_DIR }/src/legacy \
-I${MAUS_THIRD_PARTY }/ third_party/install/

include \
-I${ROOTSYS }/ include \
-L${MAUS_ROOT_DIR }/ build/ \
‘root -config --ldflags ‘ \
‘${ROOTSYS }/bin/root -config --glibs ‘ \
-lMausCpp \
-Wl,--no-as-needed

clean:
rm cpp_analysis_example

A Module Descriptions

A.1 Input

Module Description

InputCppDAQOfflineData Unpack real data offline

InputCppDAQOnlineData Used for online reconstruction

InputCppRoot Read in data from a ROOT file

InputPyJSON Read in data from a JSON file

InputPySpillGenerator Make a spill structure for simulation

A.2 Output

Module Description

OutputCppRoot Output data to a ROOT file

OutputPyImage Output data as an image file

OutputPyJSON Output data as a JSON file

20

A.3 Map

Module Precursor Description

MapCppEMRMCDigitization MapPyMCReconSetup Digitise EMR MC data

MapCppEMRPlaneHits MapPyMCReconSetup Create EMR bar hits

MapCppEMRRecon MapCppEMRPlaneHits Reconstruct the EMR data

MapCppGlobalPID MapCppGlobalTrackMatching Perform PID using Global data

MapCppGlobalReconImport Detector maps Import detector info to Global tracking

MapCppGlobalTrackMatching MapCppGlobalReconImport Reconstruct Global tracks

MapCppKLCellHits MapCppKLDigits OR Construct hits in the KL

MapCppKLMCDigitizer

MapCppKLDigits MapPyReconSetup Produce KL digits from real data

MapCppKLMCDigitizer MapPyMCReconSetup Produce KL digits from MC data

MapCppSimulation MapPyBeamMaker OR GEANT4 sim of beam through MICE

MapPyBeamlineSimulation

MapCppTOFDigits MapPyReconSetup Produce TOF digits from real data

MapCppTOFMCDigitizer MapPyMCReconSetup Produce TOF digits from MC data

MapCppTOFSlabHits MapCppTOFDigits OR Reconstruct TOF slab hits

MapCppTOFMCDigitizer

MapCppTOFSpacePoints MapCppTOFSlabHits Reconstruct TOF spacepoints

MapCppTrackerDigits MapPyReconSetup Produce Tracker digits from real data

MapCppTrackerMCDigitization MapPyMCReconSetup Produce Tracker digits from MC data

MapCppTrackerMCNoise MapCppSimulation Add noise to the Tracker simulation

MapCppTrackerRecon MapCppTrackerDigits OR Reconstruct the Tracker data

MapCppTrackerMCDigitization

MapPyBeamlineSimulation InputPySpillGenerator Generate beam with G4BeamLine

MapPyBeamMaker InputPySpillGenerator Generate beam with GEANT4

MapPyCkov MapPyMCReconSetup Reconstruct the CKOV data

MapPyDoNothing None No maps

MapPyGroup None Used to add multiple maps

MapPyMCReconSetup MapCppSimulation Setup for MC reconstrucuted data

MapPyReconSetup InputCppDAQOfflineData OR Setup for real reconstrucuted data

InputCppDAQOnlineData

MapPyScalersDump InputCppDAQOfflineData OR Print scaler data

InputCppDAQOnlineData

21

A.4 Reduce

Module Description

ReduceCppPatternRecognition Display tracker pattern recognition tracks

ReducePyCkovPlot Display CKOV data

ReducePyDoNothing No reducer

ReducePyKLPlot Display data

ReducePyTOFPlot Display TOF data

B Common Parameters and their Defaults

All the MAUS parameters and their defaults values can be found in:

src/common_py/ConfigurationDefaults.py

A table of some common parameters is produced below.

Parameter Default Description

daq_data_file ’05466.001’ The real data file

daq_data_path ’src/input/InputCppDAQData’ Location of real data

input_root_file_name ’maus_input.root’ Input ROOT file name

geometry_download_directory "files/geometry/download" CDB geometry download directory

output_root_file_name ’maus_output.root’ Output ROOT file name

keep_only_muon_tracks False Simulate muon tracks

particle_decay True Should particles decay

physics_model "QGSP_BERT" Physics package

physics_processes "standard" Physics processes

reconstruction_geometry_filename "" The simulation geometry

(blank ⇒ use simulation geometry)

reference_physics_processes "mean_energy_loss" Physics processes of ref. part.

simuation_geometry_file "Test.dat" The simulation geometry

spill_generator_number_of_spills 100 # of spills to simulate

verbose_level 1 Amount of screen output

22

C Navigating the Source Code

Description Location

Executables bin, bin/user

Documentation doc

Input modules src/input

Map modules src/map

Reduce modules src/reduce

Output modules src/output

C++ backend code src/common_cpp

Python backend code src/common_py

Datastructure src/common_cpp/Datastructure

Legacy Geometry src/legacy/FILES/Models

Tests tests

Third party libraries third_parties

D Useful Information

• The MICE website: http://mice.iit.edu

• The MAUS wiki: http://micewww.pp.rl.ac.uk/projects/maus/wiki

• Download MAUS: http://micewww.pp.rl.ac.uk/maus/

• The MICE datastore: http://www.hep.ph.ic.ac.uk/micedata/

• The MICE CDB viewer: http://cdb.mice.rl.ac.uk/cdbviewer/

• Example analysis code: http://micewww.pp.rl.ac.uk/documents/140

23

http://mice.iit.edu
http://micewww.pp.rl.ac.uk/projects/maus/wiki
http://micewww.pp.rl.ac.uk/maus/
http://www.hep.ph.ic.ac.uk/micedata/
http://cdb.mice.rl.ac.uk/cdbviewer/
http://micewww.pp.rl.ac.uk/documents/140

	Glossary of Terms
	MAUS Description
	Installing MAUS
	Obtaining the Code
	Installation
	Preparing to run
	Rebuilding
	Choosing the Unpacker

	An Introduction to the MAUS UI and API
	The API
	Creating a MAUS programme
	A Minimal Working Example
	Running a MAUS Programme and Using Datacards

	The Datastructure
	Geometry
	Running a MC Simulation
	Reconstructing Real MICE Data
	Do I Need to be Reconstructing Data Myself?
	Obtaining the Raw Data
	Unpacking and Reconstructing

	Analysing Output Data
	Obtaining Data for Analysis
	Understanding the ROOT file
	Analysis with the ROOT interpreter
	Loading Data
	ROOT Scripts
	Plotting directly from a TTree
	Reloading the Datastructure

	Analysis with Python
	Loading Data
	Plotting directly from a TTree
	Reloading the Datastructure
	ROOT alternatives

	Analysis with C++

	Module Descriptions
	Input
	Output
	Map
	Reduce

	Common Parameters and their Defaults
	Navigating the Source Code
	Useful Information

